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Vibrating wire in magnetic field

Wire loop in magnetic field B is driven

by current I and moving with velocity v.

Force acting on a piece of wire dl:

dF = I[dl×B]

dV = v · [dl×B]

EMF voltage:

F = ILB, V = vLB, where v is averege velocity

By integrating along the wire we have total force and voltage:

Equation of motion (linear dampling):

Using complex notation:
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Non-linear damping in He3-B

v

Momentum transfered by a particle: p± = ±2m〈u〉

Moving object

area A, velocity v ≪ u

density n, mass m, average velocity u
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Linear damping!

Classical gas Superfluid 3He-B

E(p) =

√(
p2−p2F
2m

)2
−∆2

Energy spectrum of Bogoliubov quasiparticles:

Normal scattering (u → −u, p → −p)

Andreev scattering (u → −u, p → p)

EF ≈ 1.8 K

∆ ≈ 1.7 mK
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Force in a simple 1D model:

Normal scttering can be prohibited by conservation of energy: quasiparticle can not loose energy and go below the gap

v0 =
kT

pF
F0 = Ap2FvFN(0) exp

(
− ∆

kT

)

per unit time: Ṅ± = −nA(〈u〉 ± v)

Amount of colliding particles at both sides

F = −F0 v0 (1− exp(−v/v0))

Group velocity u =
dE

dp

Force: F = p+Ṅ+ + p−Ṅ− = −4nAm〈u〉v
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S(x) in 1D model

measurements

for 1D scattering model: S(x) =
2

x

(
I1(x)− L−1(x) +

2

π

)
,

Ln(x) is modified Struve function.

where Inx is modified Bessel function of first kind and

Non-linear motion of the wire

Non-linear equation of motion:

ẍ = −ω2
0x− δ ẋ+

ILB

mw
cosωt

δv0f(ẋ/v0) f(x) ≈ x at x → 0

1D scattering model: f(x) = sign(x)(1− exp(−|x|))

voltage: V =
iω I(LB)2/m

ω2
0 − ω2 + iω S(|V |/V0)δ

complex velocity: v =
iω ILB/m

ω2
0 − ω2 + iω S(|v|/v0)δ

S(x) = −2

x

∫ 2π

0
f(−x sin(ωt) sinωt

d(ωt)

2π

After using van del Pol transformation and averaging over period:

If f(x) = x+ a sign(x) x2 then S(x) = 1 +
8a

3π
x



Measuring function S

Tracking mode:

1. measure resonance by sweeping frequency

2. Find a and b

fit with S(v)

Lorentzian
S(v)δ

at constant frequency, solve for S.

S(V )δ = ℜ
(

a I

V − b I

)

4. Iterate from step 1 with obtained function S

V =
a I0 iω

ω2
0 − ω2 + iωS(V )δ

+ b I0

with S = 1

at constant drive current I0

3. Measure voltage as a function of drive
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Building model for function S

Simultaneous fit of a few frequency sweeps using
function S(x) obtained from the left picture

It depends on pressure and temperature (via v0) ,

To process thermometry data we need function S(v).

on wire intrinsic damping (which depends on magnetic field).



Fitting frequncy sweeps with and without

non-linear correction

Applying non-linear correction to

tracking mode

current, nA RMS

pair breaking

heating events

Lorentzian fit

non-linear fit

Processing non-linear data
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Converting resonance width to temperature

Knowledge of function S can give us ”zero-velocity” damping δ.

It should be converted to temperature.

δ =
p2FvFN(0)

ρwdw
exp

(
− ∆

kT

)
Theory:

- type of scattering and surface of the wire

- finite coherence length in 3He (for small wire sizes)

Pre-factor in this formula can be affected by multiple things:

- dust on the wire

More information on vibrating wire thermometry: arXiv:2303.01189

Possible approach: use 0.127mm tantalum wires for calibrating thin wires:

easier to make and measure wire geometry, less affected by dust, and coherence length effects.


