

Dynamics of ϑ -solitons in the HPD state of superfluid ³He-B <u>V. V. Zavjalov</u>

Department of Physics, Lancaster University, Lancaster LA1 4YB, United Kingdom

Motivation: Experiment in Helsinki, 2018

Spin dynamics, HPD and NPD states

³He-B: spin state is described by rotation matrix $R(\mathbf{n}, \vartheta)$

Leggett equations:

x NPD $\vartheta = \cos^{-1}(-1/4)$ y y x

$$\begin{pmatrix} \dot{S}_a &= [\mathbf{S} \times \gamma \mathbf{H}]_a + T_a(R) \\ \dot{R}_{aj} &= e_{abc} R_{cj} \left(\frac{\gamma^2}{\chi_B} \mathbf{S} - \gamma \mathbf{H} \right)_b$$

creation of HPD in CW NMR

In HPD state we observed many oscillaton modes with frequency $\propto \sqrt{df}$ localized in different parts of the cell. Oscillations of solitons?

Calculation of $\vartheta\text{-soliton}$ in HPD

We solve Leggett equations numerically in 1D geometry to get soliton profile and dynamics

soliton oscillations after step change of H_z color: orientation of ${\bf n}$

Soliton in NPD: only ϑ is changing. Exact solution:

$$\vartheta = 2 \tan^{-1} \left[\sqrt{\frac{3}{5}} \tanh \left(\sqrt{\frac{65}{64}} \frac{\pm z}{\xi_D} \right) \right] + \pi$$
$$\xi_D^2 = \frac{65}{16} (2c_\perp^2 - c_\parallel^2) / \Omega_B^2$$

Soliton in HPD: small core where ϑ is changing and long tails where n is rotating.

Oscillation of soliton membrane

Soliton mass can be calculated from kynetic energy of a moving soliton. Mass density:

$$m = \frac{\chi_B}{\gamma^2} \left[(\vartheta')^2 + 2(1 - \cos \vartheta) \ (\mathbf{n}')^2 \right]$$

Tension: total energy of membrane unit area

Oscillation modes for three values of RF field 700 600 Ηz 500 frequency, 400 $\begin{array}{c} 4 \text{ mG} \bullet \\ 8 \text{ mG} \bullet \end{array}$ 300 12 mG200 100 120 20 40 60 80 100140frequency shift, Hz

- 1 Ist mode of soliton oscillations: $f_1^2 \approx 0.75 (\gamma H_x/2\pi)^2 + 4.0 (\gamma H_x/2\pi) df$ does not depend on $c_{\parallel,\perp}$ and Ω_B (T and P)
- (2) second mode of soliton oscillations: weak, depends on T and P
- (3) HPD uniform oscillations: $f_3^2 = \frac{1}{(2\pi)^2} \frac{4}{\sqrt{15}} \frac{\gamma H_x \gamma H_z \Omega_B^2}{(\gamma H_z)^2 + 8/3 \Omega_B^2}$

Ratio of tension and mass give square of wave velocity C along the membrane,

$$C^2 = 2c_\perp^2 - c_\parallel^2$$

First oscillation mode: f = 2.405 C/r

Mass profile and difference between HPD and NPD solitons

Mass density of a soliton in HPD

