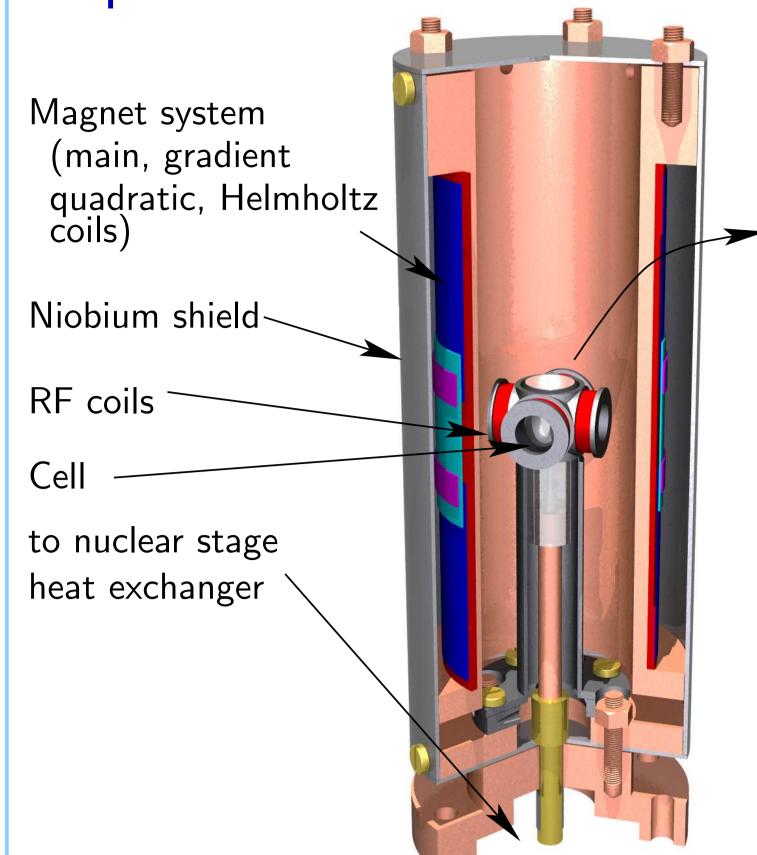
Stability and dynamics of HPD in superfluid ³He-B

V. V. Zavjalov, A. M. Savin, P. J. Hakonen

Low Temperature Laboratory, Department of Applied Physics, Aulto University, Helsinki, Finland

Experimental cell



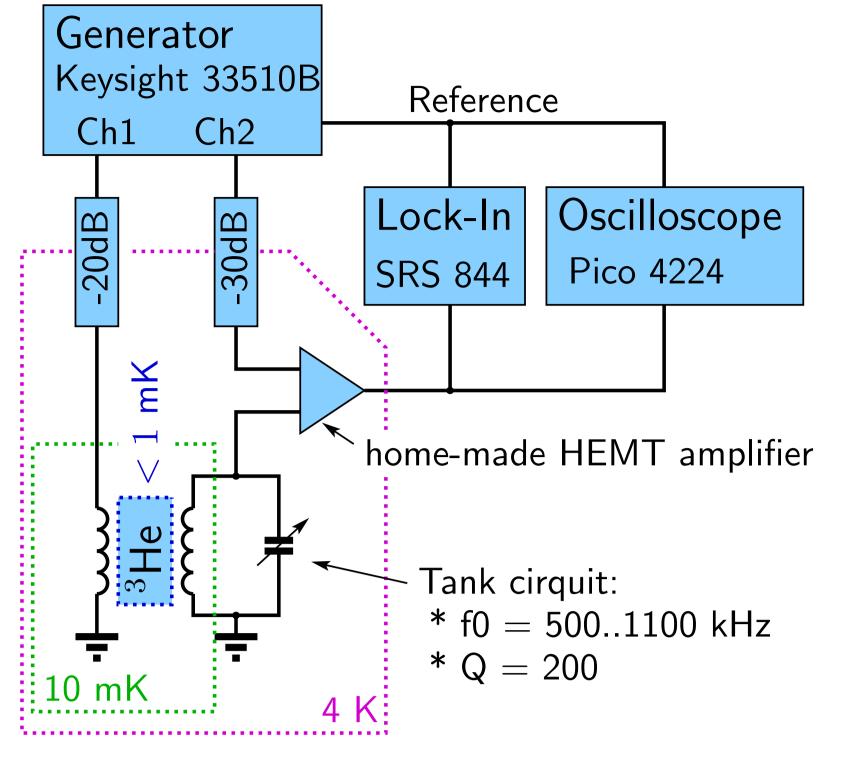
Cell (stycast 1266):

- * D=7.8 mm, L=9.0 mm,
- * filling line D=1 mm.

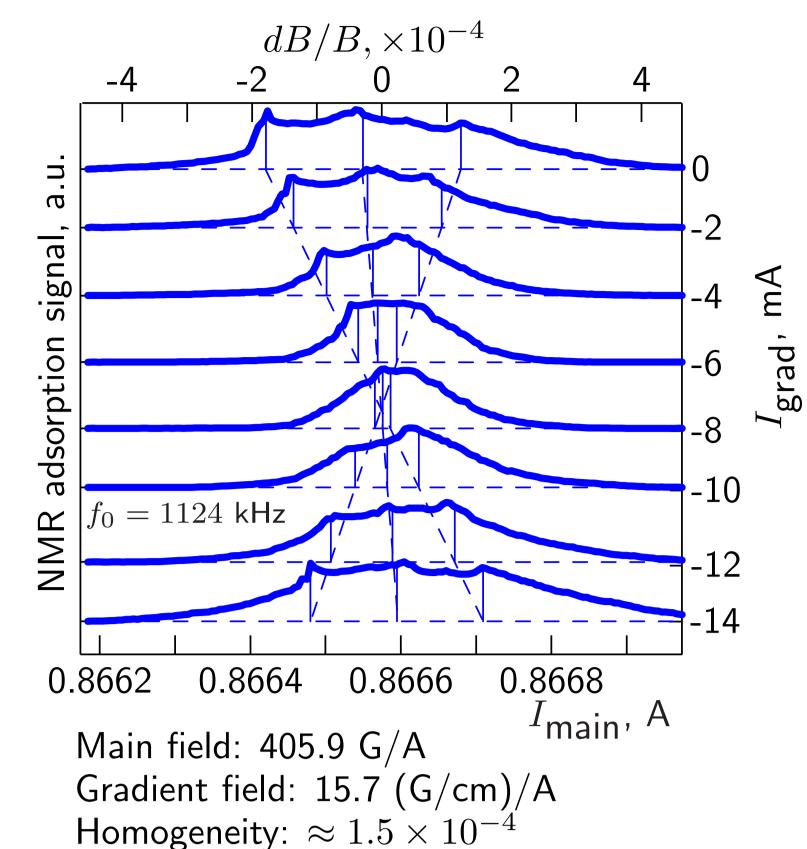
RF coils (50um copper wire):

- * L = 55 μ H, R = 14 Ω @ 300K
- * mutual L=0.15 uH, C=2.4 pF
- * field: 16.6 G/A

NMR spectrometer



Field homogeneity and gradient

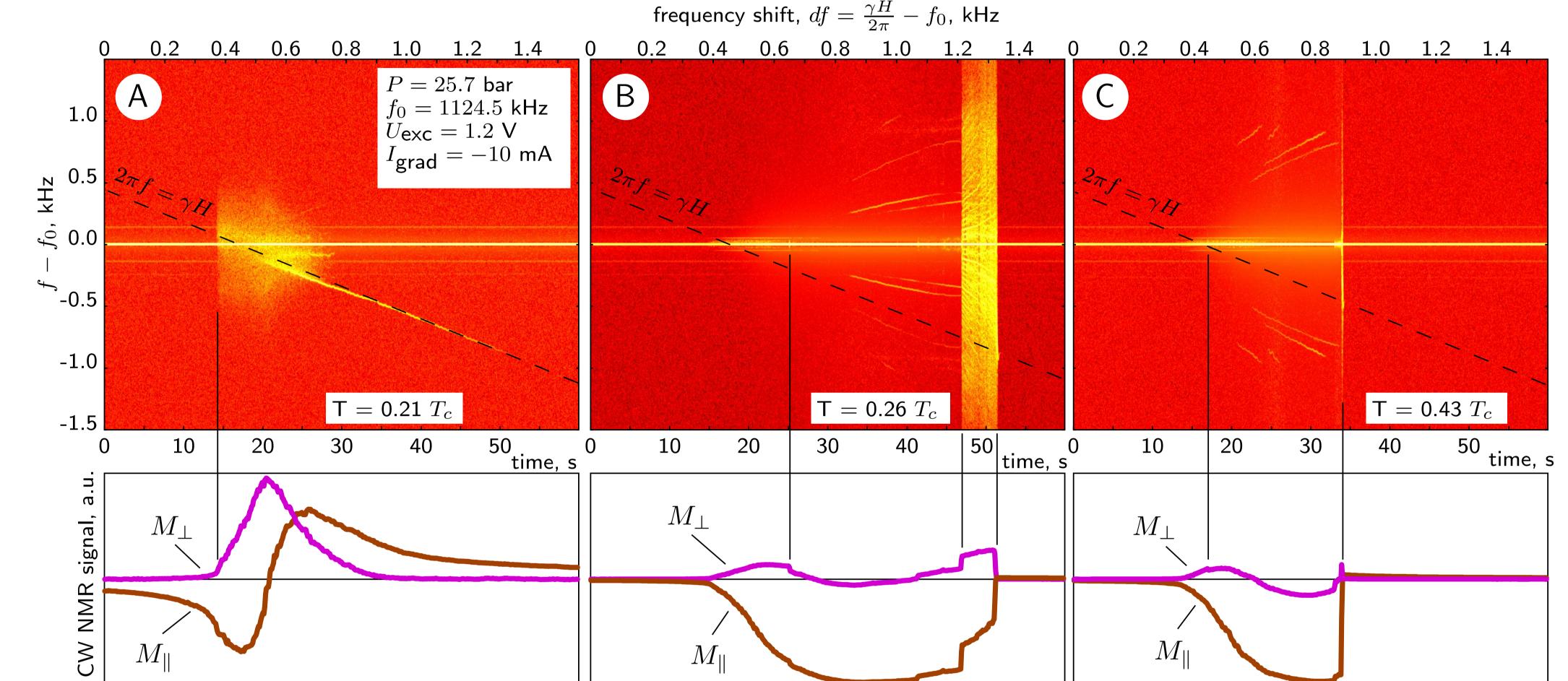


Measurements

Homogeneously precessing domain (HPD) [1,2] is created in CW NMR with frequency f_0 and RF excitation U_{exc} when field is swept down through $\gamma H =$ $2\pi f_0$. NMR signal is recorded by an oscilloscope.

- A. At low temperatures HPD can not be created because of Suhl instability [3]. A signal at Larmor frequency is observed.
- B. HPD is created, a few modulation modes are seen as side bands on the sliding FFT picture. At large frequency shifts there is an unstable region with almost chaotic modulation.
- C. At higher temperatures there is no unstable region. Different modulation modes with higher frequencies are seen.

Temperature measured by noise thermometer on the nuclear stage and is smaller then temperature of 3 He.



HPD theory

Spin dynamics of ${}^{3}\text{He-B}$ in magnetic field \mathbf{H} is described by Leggett equations:

$$\dot{\mathbf{S}} = [\mathbf{S} \times \gamma \mathbf{H}] + \frac{4}{15} \frac{\chi_B}{\gamma^2} \Omega_B^2 \sin \vartheta (4\cos \vartheta + 1) \mathbf{n},$$

$$\dot{\mathbf{n}} = -\frac{1}{2} \mathbf{n} \times \left(\frac{\gamma^2}{\chi_B} \mathbf{S} - \gamma \mathbf{H}\right),$$

$$-\frac{1}{2} \frac{\sin \vartheta}{1 - \cos \vartheta} \left[\mathbf{n} \left(\mathbf{n} \cdot \left(\frac{\gamma^2}{\chi_B} \mathbf{S} - \gamma \mathbf{H}\right) \right) - \left(\frac{\gamma^2}{\chi_B} \mathbf{S} - \gamma \mathbf{H}\right) \right]$$

$$\dot{\vartheta} = \mathbf{n} \cdot \left(\frac{\gamma^2}{\chi_B} \mathbf{S} - \gamma \mathbf{H}\right),$$

where γ , χ_B , Ω_B are gyromagnetic ratio, susceptibility, Leggett frequency of ${}^3\text{He-B}$, ${\bf S}$ is spin, ${\bf n}$ and ϑ are components of the order parameter.

In the presence of RF-field with frequency ω we can study this equation in a rotating frame where $\mathbf{H} = H_0 \hat{\mathbf{z}} + H_r \hat{\mathbf{x}}$. Then in the equilibrium

$$n_x = 0, \quad n_y = \pm 1, \quad n_z = 0,$$

$$\cos \vartheta = -\frac{1}{4} - \frac{15}{16} \left(d \pm \frac{h}{\sqrt{15}} \right) \frac{1}{b},$$

$$\frac{\gamma^2}{\chi_B} \frac{S_x}{\omega} = \pm \sin \vartheta + h, \quad S_y = 0, \quad \frac{\gamma^2}{\chi_B} \frac{S_z}{\omega} = \cos \vartheta - d,$$

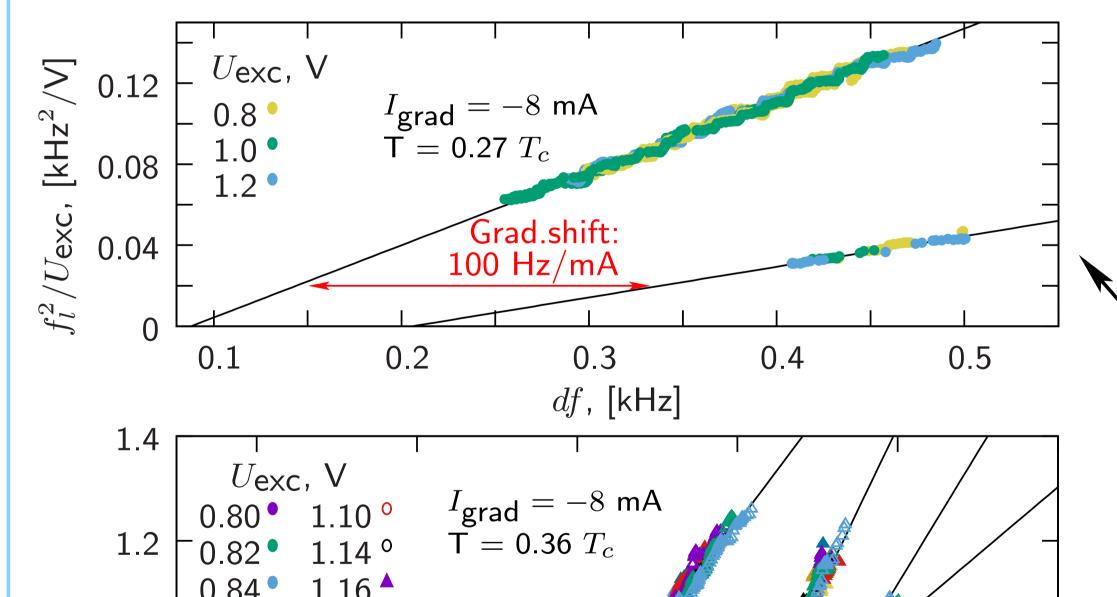
and frequencies of small oscillations near the equilibrium are [4]:

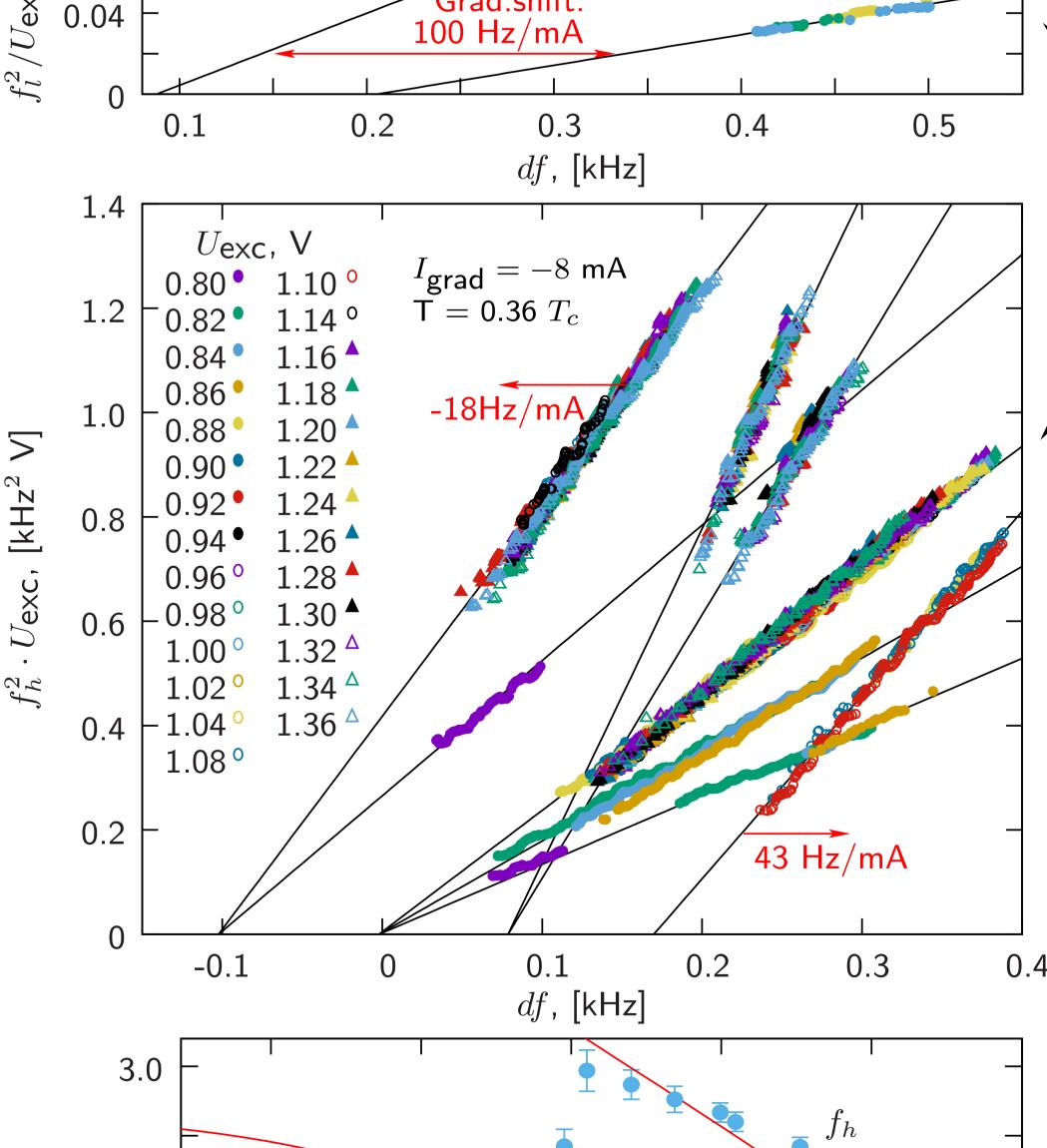
$$\left(\frac{\omega_1}{\omega}\right)^2 = \frac{4}{\sqrt{15}} \frac{\pm h b}{1 + 8/3 b},$$

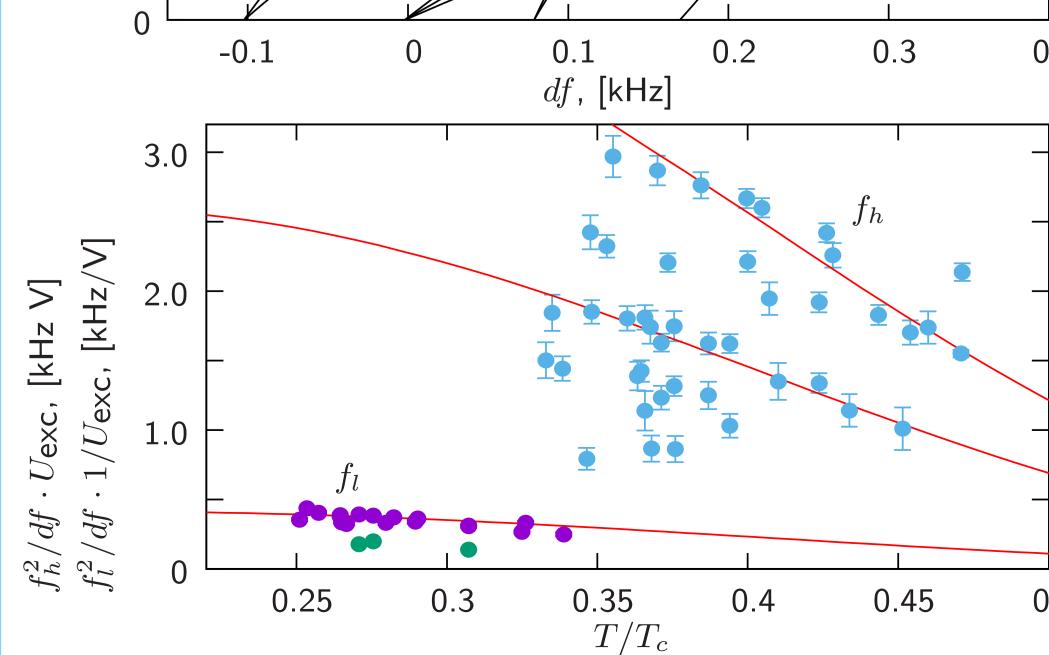
$$\left(\frac{\omega_2}{\omega}\right)^2 = \frac{\sqrt{15} d \mp h}{\sqrt{15}} \frac{3/8 + b}{1 + b}.$$

where $d=\frac{\omega-\gamma H_0}{\omega}$, $h=\frac{\gamma H_r}{\omega}$, $b=\left(\frac{\Omega_B}{\omega}\right)^2$.

- 1. I. A. Fomin, JETP **61**, 1199 (1985)
- 2. A. S. Borovik-Romanov et.al., JETP **61**, 1207 (1985)
- 3. Yu. M. Bunkov et.al., Phys.B **155**& **156**, 675 (1990)
- 4. V. V. Dmitriev et.al., JLTP 138, 765 (2005)







HPD with negative dispersion (M_{\parallel}) is always observed.

"Low-temperature" modes (B):

$$f_I^2 \propto d \cdot h$$

"High-temperature" modes (C):

$$f_h^2 \propto d/h$$

In the experiment

$$f_0 = 1.12 \text{ MHz},$$

$$h = 6.2 \cdot 10^{-6} \text{ (at } U_{\text{exc}} = 1 \text{ V)},$$

$$d = 0 \dots 4 \cdot 10^{-4},$$

$$b = 4.2 \dots 6.7 \cdot 10^{-2}.$$

Frequencies of both modes decrease with temperature (as b^2 ?). From gradient-caused shifts (see red arrows) we can say that modes are localized at different heights of the cell.

An additional small parameter is needed. We have

$$\frac{f_l}{f_h} \approx \frac{h}{2 \cdot 10^{-5}}$$

A possible source of this constant is a ratio of magnetic textural energy $a(\mathbf{n} \cdot \mathbf{H})^2$ and Zeeman energy $\chi_B \mathbf{H}^2$ which is $\approx 6 \cdot 10^{-6}$. We think that a non-uniform texture exists in the HPD, which stabilizes state with negative M_{\parallel} and creates localized traps for spin-wave modes.

Additional investigation of non-uniform textures in HPD and spin-wave spectra inside them is needed.