

Light Higgs channel of magnon BEC decay in ³He-B

Samuli Autti Vladimir Eltsov Petri Heikkinen Grigori Volovik Vladislav Zavjalov

Low Temperature + Nanophysics seminar 15.1.2015

Superfluid ³He

Fermi liquid. Superfluid transition at $\sim 1 \text{ mK}$. Cooper pairing with L = 1 and S = 1.

Order parameter: 3x3 complex matrix B phase: $A_{jk} = \Delta e^{i\phi} R_{jk}$. $(\phi - \text{phase}, R_{jk} - \text{rotation matrix})$

Oscillations of the order parameter: 18 modes 4 phase (Nambu-Goldstone) modes 14 amplitude (Higgs) modes

Ferromagnet

3D order parameter M 1 amplitude (Higgs) mode 2 phase (Nambu-Goldstone) modes — spin waves

Collective modes in ³He-B

Spin waves

Spin waves — motion of $R(\mathbf{\hat{n}}, \theta)$

1. magnetic field $\mathbf{H} \parallel \hat{\mathbf{n}}$

motion of $\hat{\mathbf{n}} \rightarrow$ transverse spin waves, similar to ferromagnets motion of $\theta \rightarrow$ longitudinal spin waves.

light Higgs mode.

Experimental setup

Optical magnons — quasiparticles in a potential formed by texture and field.

Energy minimum, $\mathbf{H} \parallel \hat{\mathbf{n}}$, BEC

Long coherent precession:

Suhl instability

Suhl instability

Suhl instability - experiment

Effect of vortices

Conclusions

- 1. Three spin wave modes in ³He-B form the analog of the little Higgs vector field. The role of the interaction, which explicitly violates the global spin-rotation symmetry, is played by tiny spin-orbit coupling. The longitudinal spin wave is an analog of the light Higgs boson. Two others are optical and acoustic magnons.
- 2. We observed the interplay of the all three spin wave modes in the experiment: a parametric decay of BEC of optical magnons into light Higgs bosons or into acoustic magnons. Direct excitation of acoustic magnons have been also observed in presence of vortices.
- 3. A possibility of excitation and detection of acoustic magnons can open a new research direction, a study of a ³He sample with the short spin waves, which can be controlled by non-uniform magnetic field and the texture. The parametric excitation of light Higgs bosons gives us a good method to measure Leggett frequency.