ru en
.. ....... НовостиNews - ПоискSearch - ТекстыTexts - ФотоPhotos - КартыMaps - СнаряжениеEquipment - LTLT

Cryogenic properties of materials

V.Zavjalov, 2018-2020

Thermal expansion [%]

material77K4KRef.
Si 0.023 0.022 [1]
W 0.081 0.088 [1]
Mo 0.089 0.090 [2]
Nb 0.129 0.143 [1]
Excel GRP tube 0.143 - [9]
Macor 0.147 0.169 [3]
Hastalloy C 0.204 0.218 [1]
SS 304/316 0.278 0.297 [1]
Au 0.278 0.324 [2]
Cu 0.302 0.326 [1]
Brass 70/30 (soft) 0.337 0.369 [1]
Brass 65/35 0.350 0.384 [1]
Ag 0.366 0.413 [2]
Al 0.390 0.414 [1]
Torlon 4203 0.393 0.454 [4]
Stycast-2850FT 0.400 0.440 [1]
PET 0.428 0.511 [16]
GRP 0.517 0.579 [5][9]
Vespel SP-22 0.558 0.633 [6]
Pb 0.577 0.708 [2]
Zn 0.588 0.683 [2]
In 0.595 0.706 [2]
PEEK 0.917 1.048 [15]
Stycast-1266 1.035 1.150 [6]
Epoxy CY221/HY979 1.089 1.224 [15]
Polycarbonate 1.158 1.314 [15]
Nylon 1.25 1.39 [1]
Polyamide PA12 1.717 1.862 [15]
Teflon 1.93 2.14 [1]

Thermal conductivity [W/cm/K]

Torlon 4203 $6.13\cdot10^{-5}\,T^{2.18}$ [4], 0.1 - 5 K
GRP,Nylon $2.42\cdot10^{-5}\,T^{1.77}$ [5], 0.2 - 5 K
Nylon $2.6\cdot10^{-5}\,T^{1.75}$ [13]
G10-CR (glass-reinforced epoxy)$2.523\cdot10^{-4}\,T^{2.21}$ [7]
Macor $1.127\cdot10^{-5}\,T^{2.82}$ [7]
Vespel SP1 $1.178\cdot10^{-5}\,T^{1.45}$ [7]
Vespel SP1 $1.8\cdot10^{-5}\,T^{1.21}$ [13]
Vespel SP5 (30% glass) $3.0\cdot10^{-5}\,T^{1.73}$ [13]
Vespel SP22 (40% graphite) $1.7\cdot10^{-5}\,T^{1.85}$ [12]
Vespel SP22 (40% graphite) $1.7\cdot10^{-5}\,T^{2.0}$ [13]
manganin $5.976\cdot10^{-4}\,T^{1.02}$ [7]
CuNi $6.5\cdot10^{-4}\,T^{1.1}$ [12]
Nb ?? $0.2\,T^3$ [8], 0.04 - 4 K - check units!
NbTi wire $1.5\cdot10^{-4}\,T^{2.0}$ [12]
Stycast-1266 $4.9\cdot10^{-4}\,T^{1.98}$ [11] 0.045 - 0.45K
Stycast-1266 $3.9\cdot10^{-4}\,T^{1.9}$ [12]
Stycast-2850FT $9.2\cdot10^{-5}\,T^{2.65}$ [12]
Araldite CT200 $2.4\cdot10^{-4}\,T^{1.74}$ [13]
PET depends on cristallinity [7] and links there
PEEK no agreement [7] and links there
PEEK $18.7\cdot10^{-6}\,T^{1.47}$ [17] 0.1 - 1 K

Torlon = Tecator = Duratron = PAI (polyamide-imide)

[1] T. H. K. Barron, G. K. White,
Heat Capacity and Thermal Expansion at Low Temperatures
Springer US, Year: 1999,
ISBN: 978-1-4613-7126-7,978-1-4615-4695-5

[2] R. J. Corruccini, J. J. Gniewek,
Thermal expansion of technical solids at low temperatures,
National Bureau of Standards, 1961
https://nvlpubs.nist.gov/nistpubs/Legacy/MONO/nbsmonograph29.pdf

[3] G. Nunes, Dinsie Williams,
Thermal contraction of ultrahigh vacuum materials for scanning probe microscopy from 300 to 4 K,
J.Vac.Sci. 13, 1063-1065 (1995)
https://avs.scitation.org/doi/abs/10.1116/1.587905

[4] G. Ventura, G. Bianchini, E. Gottardi, I. Peroni, A. Peruzzi,
Thermal expansion and thermal conductivity of Torlon at low temperatures,
Cryogenics, 39, 481-484 (1999)
https://doi.org/10.1016/S0011-2275(99)00051-X

[4a] M. Barucci, E. Olivieri, E. Pasca, et al.,
Thermal conductivity of Torlon between 4.2 and 300 K,
Cryogenics, 45 295 (2005)
https://www.sciencedirect.com/science/article/pii/S0011227505000032

[5] M. Barucci, G. Bianchini, T. Del Rosso, E. Gottardi, I. Peronic, G. Ventura,
Thermal expansion and thermal conductivity of glass-fibre reinforced nylon at low temperature,
Cryogenics, 40, 465-467 (2000))
https://doi.org/10.1016/S0011-2275(00)00067-9

[6] G. W. Swift, R. E. Packard,
Thermal contraction of Vespel SP22 and Stycast 1266 from 300K to 4K,
Cryogenics, 19, 362-363 (1979))
https://doi.org/10.1016/0011-2275(79)90161-9

[7] Adam L. Woodcraft, Adam Gray,
A low temperature thermal conductivity database,
AIP Conference Proceedings 1185, 681 (2009);
https://doi.org/10.1063/1.3292433
(Macor, Vespel SP-1, G-10CR, Manganin, Ti6Al4V, PET, PEEK, AXM-5Q)

[8] Anderson, A. C. and Satterthwaite, C. B. and Smith, S. C.,
Thermal Conductivity of Superconducting Niobium,
Phys. Rev. B, 3, (1971)
https://link.aps.org/doi/10.1103/PhysRevB.3.3762

[9] 2018_th_exp.htm

[11] Armstrong, G. and Greenberg, A. S. and Sites, J. R.,
Very low temperature thermal conductivity and optical properties of Stycast 1266 epoxy,
Rev.of Sci.Instr., 49, 345-347 (1978)
https://doi.org/10.1063/1.1135404

[12] J.R. Olson,
Thermal conductivity of some common cryostat materials between 0.05 and 2 K,
Cryogenics, 33, 729--731 (1993)
http://doi.org/10.1016/0011-2275%2893%2990027-l

[13] M. Locatelli; D. Arnaud; M. Routin,
Thermal conductivity of some insulating materials materials below 1 K,
Cryogenics, 16, 374--375 (1976)
http://doi.org/10.1016/0011-2275%2876%2990220-4

[14] P. E. Bradley, R. Radebaugh,
Properties of selected materials at cryogenic temperatures
https://ws680.nist.gov/publication/get_pdf.cfm?pub_id=913059

[15] G. Baschek and G. Hartwig
Parameters influencing the thermal expansion of polymers and fibre composites
Cryogenics, 38, 99-103 (1998)
https://doi.org/10.1016/S0011-2275(97)00117-3

[16] R.P. Reed; R.E. Schramm; A.F. Clark
Mechanical, thermal, and electrical properties of selected polymers
Cryogenics, 13, 0011-2275 (1973)
http://doi.org/10.1016/0011-2275%2873%2990129-x

[17] Gottardi et al. https://d1wqtxts1xzle7.cloudfront.net/41490437/THERMAL_CONDUCTIVITY_OF_POLYETHERETHERKE20160123-2749-feo8kk-libre.pdf?1453588163=&response-content-disposition=inline%3B+filename%3DThermal_conductivity_of_poly_ether_ether.pdf&Expires=1681818901&Signature=b0~5zDdmVd4To-z9LbzKDt5z58cB3LQlwDNnfyW9y1~9zymo0OmPZjU5XjNC2GHW07HVgTFVRYQrVKXyuNp6QDPk7dzAvHpYd4SIVXd~FVtIkAzaG6VKFSDIyxKN7Xnsbkk5TYVPzUaNQYWLJ6kDudccrsFqojLxNMqpfihTNu~NlxL3ogyR1yjiwwY-~L0GvA3Xw8w3W6jZJDOEALWD8vhc27vPSB1Qji9quo1gvxf5Jv3pertai7nTPdrNZYHCwKvcgZV9DjvqyJ~nbK7NaxvFiWnu~mY6cep34XpAxuz-MgF~WcuuFwEAQ46uTh14O52kQP-PIUQBOotkm4Fdnw__&Key-Pair-Id=APKAJLOHF5GGSLRBV4ZA